skip to main content


Search for: All records

Creators/Authors contains: "Leonardo, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nested idealized baroclinic wave simulations at 4-km and 800-m grid spacing are used to analyze the precipitation structures and their evolution in the comma head of a developing extratropical cyclone. After the cyclone spins up by hour 120, snow multibands develop within a wedge-shaped region east of the near-surface low center within a region of 700–500-hPa potential and conditional instability. The cells deepen and elongate northeastward as they propagate north. There is also an increase in 600–500-hPa southwesterly vertical wind shear prior to band development. The system stops producing bands 12 h later as the differential moisture advection weakens, and the instability is depleted by the convection. Sensitivity experiments are run in which the initial stability and horizontal temperature gradient of the baroclinic wave are adjusted by 5%–10%. A 10% decrease in initial instability results in less than half the control run potential instability by 120 h and the cyclone fails to produce multibands. Meanwhile, a 5% decrease in instability delays the development of multibands by 18 h. Meanwhile, decreasing the initial horizontal temperature gradient by 10% delays the growth of vertical shear and instability, corresponding to multibands developing 12–18 h later. Conversely, increasing the horizontal temperature gradient by 10% corresponds to greater vertical shear, resulting in more prolific multiband activity developing ∼12 h earlier. Overall, the relatively large changes in band characteristics over a ∼12-h period (120–133 h) and band evolutions for the sensitivity experiments highlight the potential predictability challenges.

    Significance Statement

    Multiple-banded precipitation structures are difficult to predict and can greatly impact snowfall forecasts. This study investigates the precipitation bands in the comma head of a low pressure system in a numerical model to systematically isolate the roles of different ambient conditions. The results emphasize that environments with instability (e.g., air free to rise after small upward displacement) and increasing winds with height favor the development of banded structures. The forecast challenge for these bands is illustrated by starting the model with relatively small changes in the temperature field. Decreasing the instability by 10% suppresses band development, while increasing (decreasing) the horizontal temperature change across the system by 10% corresponds to the bands developing 12 h earlier (later).

     
    more » « less
  2. Abstract

    The synoptic evolution and mechanisms for the largest medium-range (72–120 h) along-track errors of tropical cyclones (TC) are investigated. The mean along-track errors (ATEs) of the 51-member European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble are evaluated for 393 forecasts (85 TCs) during the 2008 to 2016 North Atlantic seasons. The 27 unique forecasts within the upper quintile of most negative ATEs (i.e., slow bias greater than 500 km by 72 h) are inherently fast-moving TCs that undergo extratropical transition as they recurve and interact with a 300-hPa upstream trough and a downstream ridge. Both the trough and ridge are underamplified by only 5–10 m ~60 h before the time of largest ATE. The height errors then grow rapidly due to underpredicted 300–200-hPa potential vorticity advection by both the nondivergent wind and the irrotational wind from the TC’s outflow. Both wind components are underpredicted and result in weak biases in the trough’s developing potential vorticity gradient and associated jet streak. The underamplification of the upstream trough is exacerbated by underpredicted 700-hPa cold advection extending from beneath the trough into the TC at 48–36 h before the largest ATE. Standardized differences are consistent with the mean errors and reveal that weaker divergent outflow is driven by underpredicted near-TC precipitation, which corresponds to underpredicted 700-hPa moisture fluxes near the TC at ~108 h before the largest ATE. The ensemble member ATEs at 72–120 h generally show little correlation with their ATEs before 36 h, suggesting that initial position uncertainty is not the primary source of ATE variability later in the forecast.

     
    more » « less